Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Chin Med Sci J ; 36(1): 66-71, 2021 Mar 31.
Article in English | MEDLINE | ID: covidwho-1187235

ABSTRACT

In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an imported case in Beijing, which manifested as nodular lesions on chest CT imaging at the early stage. Deep Learning (DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia, so that prompt medical isolation was taken. The patient was confirmed as COVID-19 case after nucleic acid test, for which the community transmission was prevented timely. The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnostic imaging , Deep Learning , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Beijing , Community-Acquired Infections/diagnostic imaging , Humans , Male
3.
World J Diabetes ; 11(11): 481-488, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-955247

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak that occurred in late 2019 has posed a huge threat to the health of all humans, especially for individuals who already have diabetes mellitus (DM). DM is one of the most serious diseases that affect human health, with high morbidity and rates of complications. Medical scientists worldwide have been working to control blood sugar levels and the complications associated with sugar level alterations, with an aim to reduce the adverse consequences of acute and chronic complications caused by DM. Patients with DM face great challenges during the pandemic owing to not only changes in the allocation of medical resources but also their abnormal autoimmune status, which reduces their resistance to infections. This increases the difficulty in treatment and the risk of mortality. This review presents, from an epidemiological viewpoint, information on the susceptibility of patients with DM to COVID-19 and the related treatment plans and strategies used in this population.

4.
Int J Biol Sci ; 16(15): 3028-3036, 2020.
Article in English | MEDLINE | ID: covidwho-874840

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, with acute respiratory failure as the most significant symptom, has led to a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is considered as the most important receptor of SARS-CoV-2 and wildly expressed in human tissues. Whereas, the extremely low expression of ACE2 in lung could hardly interpret the severe symptom of pneumonia in COVID-19 patients. Here we profiled two SARS-CoV-2 infection related genes, the transmembrane serine protease 2 (TMPRSS2) and the interferon-inducible transmembrane protein 3 (IFITM3), in human tissues and organs. Consistent with the expression and distribution of ACE2, TMPRSS2 was also highly expressed in digestive, urinary and reproductive systems, but low expressed in lung. Notably, the anti-virus protein IFITM3 also expressed much lower in lung than other tissues, which might be related to the severe lung symptoms of COVID-19. In addition, the low expression of IFITM3 in immune cells suggested that SARS-CoV-2 might attack lymphocytes and induce the cytokine release syndrome (CRS). Furthermore, cancer patients were considered as more susceptible to SARS-CoV-2 infection. Our data supposed that fourteen types of tumors might have different susceptibility to the virus according to ACE2, TMPRSS2 and IFITM3 expression patterns. Interestingly the prognosis of six types of cancers including breast carcinoma (BRCA), lung adenocarcinoma (LUAD), uterine corpus endometrial carcinoma (UCEC), renal clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), and hepatocellular carcinoma (LIHC) were closely related to these gene expressions. Our study explored the expression and distribution profiles of two potential novel molecules that might participate in SARS-CoV-2 infection and involved in immunity, which may provide a functional basis for preventing infection of SARS-CoV-2.


Subject(s)
Gene Expression Regulation, Neoplastic , Membrane Proteins/physiology , Neoplasms/metabolism , RNA-Binding Proteins/physiology , Receptors, Virus/physiology , Serine Endopeptidases/physiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , DNA Mutational Analysis , Gene Expression Regulation , Healthy Volunteers , Humans , Membrane Proteins/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Prognosis , RNA-Binding Proteins/genetics , Receptors, Virus/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Tissue Distribution
5.
Ann Transl Med ; 8(7): 481, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-249209

ABSTRACT

BACKGROUND: The new coronavirus pneumonia (NCP) is now causing a severe public health emergency. The novel coronavirus 2019 (2019-nCoV) infected individuals by binding human angiotensin converting enzyme II (ACE2) receptor. ACE2 is widely expressed in multiple organs including respiratory, cardiovascular, digestive and urinary systems in healthy individuals. These tissues with high expression level of ACE2 seemed to be more vulnerable to SARS-CoV-2 infection. Recently, it has been reported that patients with tumors were likely to be more susceptible to SARS-CoV-2 infection and indicated poor prognosis. METHODS: The tissue atlas database and the blood atlas were used to analyze the distribution of ACE2 in human tissues or organs of cancers and normal samples. Starbase dataset was applied to predict the prognosis of cancers according to expression level of ACE2. RESULTS: In this study, we demonstrated a landscape profiling analysis on expression level of ACE2 in pan-cancers and showed the risky of different type of cancers to SARS-CoV-2 according to the expression level of ACE2. In addition, we found that ACE2 was both differential expression and related to the prognosis only in liver hepatocellular carcinoma (LIHC). Relative high expression of ACE2 indicated a favorable prognosis in LIHC, but they might be more susceptible to SARS-CoV-2. CONCLUSIONS: We indeed emphasized that LIHC patients with high expression level of ACE2 should be more cautious of the virus infection. Our study might provide a potential clue for preventing infection of SARS-CoV-2 in cancers.

SELECTION OF CITATIONS
SEARCH DETAIL